242 research outputs found

    Hierarchies of turing machines with restricted tape alphabet size

    Get PDF
    It is shown that for any real constants b>a≥0, multitape Turing machines operating in space L1(n)=[bnr] can accept more sets than those operating in space L2(n)=[anr] provided the number of work tapes and tape alphabet size are held fixed. It is also shown that Turing machines with k+1 work tapes are more powerful than those with k work tapes if the tape alphabet size and the amount of work space are held constant

    On space-bounded synchronized alternating Turing machines

    Get PDF
    AbstractWe continue the study of the computational power of synchronized alternating Turing machines (SATM) introduced in (Hromkovič 1986, Slobodová 1987, 1988a, b) to allow communication via synchronization among processes of alternating Turing machines. We are interested in comparing the four main classes of space-bounded synchronized alternating Turing machines obtained by adding or removing off-line capability and nondeterminism (1SUTM(S(n)), SUTM(S(n)), 1SATM(S(n)), and SATM(S(n)) against one another and against other variants of alternating Turing machines. Denoting the class of languages accepted by machines in C by L(C), we show as our main results that L(1SUTM(S(n))) ⊂ L(SUTM(S(n))) ⊂ L(1SATM(S(n)))= L(SATM(S(n))) for all space-bounded functions S(n)ϵo(n), and L(1SUTM(S(n)))= L(SUTM(S(n))) ⊂ L(1SATM(S(n)))=L(SATM(S(n))) for S(n)) ⩾ n. Furthermore, we show that for log log(n) ⩽ S(n)ϵo(log(n)), L(1SUTM(S(n))) is incomparable to L[1] ATM(S(n))). L(UTM(S(n))), L(1MUTM(S(n))), and L(MUTM(S(n))), where MATMs are alternating Turing machines with modified acceptance proposed in (Inoue 1989); in contrast, we show that these relationships become proper inclusions when log(n) ⩽ S(n)ϵo(n).For deterministic synchronized alternating finite automata with at most k processes (1DSA(k)FA and DSA(k)FA) we establish a tight hierarchy on the number of processes for the one-way case, namely, L(1DSA(n)FA) ⊂ L(1DSA(n+1)FA) for all n > 0, and show that L(1DFA(2)) − ∪k=1∞L(DSA(k)FA) ≠ ∅, where DFA(k) denotes deterministic k-head finite automata. Finally we investigate closure properties under Boolean operations for some of these classes of languages

    An Efficient All-Parses Systolic Algorithm for General Context-Free Parsing

    Get PDF
    The problem of outputting all parse trees of a string accepted by a context-free grammar is considered. A systolic algorithm is presented that operates in O (m n) time, where m is the number of distinct parse traces and n is the length of the input. The systolic array uses n2 processors, each of which requires at most O(log n) bits of storage. This is much more space-efficient than a previously reported systolic algorithm for the same problem, which required O (n log n) space per processor. The algorithm also extends previous algorithms that only output a single parse tree of the input
    corecore